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I. PhF. Condens. Matter 5 (1993) 977-990. Printed in the UK 

Relativistic effects on the Compton profile of polycrystalline 
gold 

Helmut Reinisch and Helmut Bross 
Sektion Physik der Universilail Miinchen, Thererienstrasse 37, D-8000 Mfinchen 2, 
Federal Republic of Germany 

Received 22 May 19% in final form 9 November 1992 

Abstract. The spherically averaged Compton profile (e) for gold is calculated on the 
basis of the relativistic density-functional theory in the localdensity approximation (WA) 
with a warped muffin-tin potential. In the all-electron self-oonsistent procedure, the 
core levels are olculaled by means of the Dirac operator while the valence levels are 
determined by a relativistic generalization of the modified augmented plane-wave (W) 
method using the reduced 2 x 2 matrix Hamiltonian according to Foldy and Wouthuysen. 
The cps of the mre electrons are found to be in surprisingly good agreement with the 
orbital cps of the relativistic Harlree-Fock calculation for atomic gold by Biggs et d. 
The relativistic comeclions on the valence CP due Io mass-velocity and the Damin term 
are inwtigated separately and comparisons wilh non-relativistic calculations are made. 

1. Introduction 

For 30 years the density-functional theoly [l] has been used extensively for the 
investigation of crystal ground-state properties. Within this theoty, it is possible 
to determine the electron charge and spin density, as well as the total binding energy 
and related quantities such as the magnetic susceptibility, equilibrium lattice constant 
and bulk modulus 121. A set of single-particle equations with an effective potential 
for auxiliary particles must be solved self-consistently 131. The only quantity that 
needs to be approximated is the exchangecorrelation energy functional EJn], and 
in most cases the simplest approximation for E J n ] ,  the local-density approximation 
(IDA), is used. In this oneparticle scheme the calculation of further properties 
than those mentioned above is established by means of the wavefunctions that are 
solutions of the single-particle equations. Though this procedure is not rigorously 
confirmed, it provides in most cases the best available description of the ground 
state and the excited s ta te  of transition metals. In this framework the examination 
of the electron mOmenNm density, the Compton profile (CP), and the influence of 
relativistic corrections on it is the main purpose of the present paper. Here the 
relativistic extension of the densiiy-functional theory [4, SI is applied, and exchange 
and correlation are treated in terms of the Gunnarsson-Lundqvist approach 161 with 
the relativistic correction according to MacDonald and Vosko [7]. Alternatively, 
the momentum analogue of the spatial Hohenberg-Kohn theorem [SI would permit 
direct calculation of the electron momentum-space density without loss of rigour, 
but until now only non-relativistic considerations and crude approximations for the 
momentum-space energy functionals have been available 191. 
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The spherical mean value J ( q )  of the CP is related to the spherical mean value 
n ( p )  of the electron momentum density by [lo] 

Within the so-called impulse approximation [ll] J ( q )  is proportional to the 
differential cross section [lo] and therefore directly measurable by y-ray scattering 
experiments on polycrystalline matter. This concept holds even in a relativistic context 
near the Compton line for electrons with small binding energies, i.e. valence electrons 
[12]. That means that the total differential cross section is accurate enough in this 
area, as the contribution of the valence electrons dominates. 

Compton scattering studies on transition metals involving the use of polycrystalline 
samples aim at the determination of absolute cps. More recent measurements 
use single crystals to obtain their directional dependence. After convoluting the 
theoretical absolute profile with the residual instrument function, the agreement with 
experiment was found to be good in many cases [13-20], when the renormalid free 
atom (RFA) model [21] with a suitably chosen electronic configuration for the outer 
electrons was used. The agreement turns out to be worse in the case of more accurate 
electron band-structure calculations like the augmented plane-wave (Apw)-or linear 
combination of atomic orbitals (LcA0)-method, when no fitting parameter is used. 
Independently of the quality of the particular band model, theoretical directional 
difference profiles are approximately a factor of 2 larger than the measured ones 
[22], which has been interpreted as a drawback of the IDA [23]. 

Only a few relativistic treatments have been carried out so far. Apart from 
spin-polarized calculations, there is only one self-consistent band-structure calculation 
of valence CPS of crystals, which however takes into account only scalar-relativistic 
effects. This calculation by Papanicolaou et a1 [24] on tantalum and tungsten makes 
use of the method of Koelling and Harmon [25] to include Darwin and mass-velocity 
relativistic corrections in an overall manner, but neglects the spin-orbit coupling. 
The discrepancy between this calculation and measurements on tungsten by Mittal 
er QI [U] turns out to be 4% for the absolute profile J ( 0 ) .  It was supposed that 
this difference originates from the neglect of spin-orbit coupling. But the present 
investigation shows that this effect contributes only 0.1% in the case of gold, which 
has an even higher atomic number. 

With increasing nuclear charge, competitive processes like photoabsorption and 
Rayleigh scattering make the evaluation of CPS from experimental data of heavy 
elements difficult. That is why no y-ray valence CP data of gold crystals have been 
reported until now. The present work aims to stimulate such measurements, as 
it forms a basis for the analysis of the experimental data. The only e,xperimental 
investigation of the valence CP of gold 1261 makes use of proton-electron scattering 
yielding the so-called ion 0 s  which resemble in many details conventional ?-ray 
CPs. As physically interesting effects change cP lineshapes only by small amounts, 
this paper discusses separately the influence of the various relativistic corrections 
on the valence CP and shows their relevance. The contribution to the CP due to 
the core electrons is determined within the density-functional theory using a very 
effective integration method and is compared with the orbital CPS of the relativistic 
Hartree-Rck calculation for atomic gold by Biggs er QZ [U]. 
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2. Band structure 

For simplification, the one-particle equation is solved within the warped muffin-tin 
shape approximation of the effective potential VeE(r). All states spatially localized 
inside the Slater sphere with Irl-dependent potential VeE(r) are found by solving the 
four-component Dirac equation. These correspond to the 46 electrons that occupy 
the levels I d .  

Different band-structure methods have been developed in the past (see, e.g., 1281) 
for the valence electrons. Their relativistic generalization is based either on the 
four-component Dirac equation or on a two-component formalism. An advantage 
of the latter is that it offers the possibility for a ‘quasi-relativistic’ approach where 
spin-orbit interaction is neglected. Its use in self-consistent procedures requires the 
norm conservation of the two-component wavefunctions 11, for the calculation of 
the electron charge density. This requirement is fulfilled by decoupling the large 
and small componens of the Dirac equation via successive application of unitary 
Foldy-Wouthysen transformations [29], yielding a quasi-relativistic two-component 
Pauli-type equation. Decoupling up to second order in the fine-stucture constant 
a results in corrections to the kinetic energy (of massvelocity type) 7imv and to 
the potential (Darwin term) ‘Hd and introduces spin-orbit coupling 7iso into the 
Schrodinger equation. The resulting Hamiltonian has successfully been used in atomic 
[30] and band-structure [31] calculations. 

Difficulties might arise when determining the relativistic corrections of the 
variational expression. The effective potential is not continuous on the surface 
of the Slater sphere owing to the warped muffin-tin approximation. Therefore 
the expectation values are unambiguously determined only if 11, fulfils the minimal 
condition to be continuously differentiable in the whole WignerSeitz cell (WSC), 
which moreover ensures the physical condition of current conservation. Marcus [32] 
gives various arguments as to how to interpret these expectation values for trial 
functions violating the minimal condition. But different parameters must be chosen 
in an appropriate but not unambiguous way. 

The modilied augmented plane-wave method (MAPW) is well suited for the 
problem under discussion because the w w  wavefunction and its first derivative 
are exactly continuous on the surface of the Slater sphere and the wavefunctions 
of the valence electrons are orthogonal to the wavefunctions of the core electrons 
[33-371. A four-component relativistic generalization of the w w  method was done 
by Hofmann and Bross [38] and applied by Schiekel [39]. For a two-component 
generalization used here, one has to replace the real scalar expansion coefficients by 
complex spinors. Results for the matrix elements of the Hamiltonian with the w w  
amau functions can be found in [NI. Details about the self-consistent procedure 
and how the self-consistent potential may be obtained from the w w  formalism are 
described elsewhere [41]. 

3. Compton proffile 

All one-particle states in the crystal lattice have the Bloch form I+bnk(r) = 
exp(ik. r)unk(r), where unk(r)  has the periodicity of the crystal lattice. Their 
Fourier transforms are given by 
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Here n is the band index in the case of valence electrons or contains the quantum 
numbers { n , j , l , m }  (with usual meaning) in the case of atomic states; h is the 
reduced wavevector, and V,, and V denote the volumes of the first Brillouin zone 
and the bulk, respectively. When the initial and final spin states are not observed in 
scattering experiments, the electron momentum density is the trace with respect to 
the spin: 

where the @function admits only occupied electron states with energy levels E,, 
less than the Fermi energy Ef. 

3.1. Core leveh 

Evaluating equations (2) and (3) with the solution of the Dirac equation for core 
electrons yields for shells fully occupied with respect to the magnetic quantum number 
( - j  Q m Q j) the following electron momentum density: 

Here rp-'g(r) and rp- ' f ( r )  are radial functions of the large and small componens 
of the Dirac wavefunction with p = [d - ( Z C ~ ) ~ ] ' / ~ ,  I' = 1 + s, j = 1 + s/Z, 
IE = -s(j + 1/2), s = &l and 2 = 79 is the atomic number of gold. The 
normalization conditions of the momentum density and of the CP 

can be used as a check for the accuracy of the calculations. Owing to the localization 
of the functions g and f the integral appearing in equation (1) has to be extended 
to high momenta. This causes two dficuIties. First, in the high-momenlum region 
the integrands in equation (4) show a highly oscillatory behaviour because of the 
Bessel functions; and secondly, one is compelled to cut off the integration p-mesh 
at a certain maximum value p,. The first difficulty is avoided in the following way: 
The effective charge ZCB(r) = rV,,(r) given on a mesh vi is interpolated by a cubic 
spline function, which is continuous up to the second derivative at each point and is, 
of course, analytical in each interval r E [r i ,  vi+] ] .  Therefore, the Dirac equation is 
solved by virtue of the series 

m 

h(r)  = Ch,(r- vi)" T E  [rirrifl] 
"=U 
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for each interval, where h stands for the functions g(r), f ( r )  and J f ( p r ) / ( p r ) ' .  
These functions are chosen such that h, # 0, where the last function belongs to 
the special values V,, = 0, a = 0 and E = p 2 .  The expansion coefficients h,  
obey recursion relations, from which they are easily obtained by consideration of the 
bounday conditions at each knot of the r-mesh. Applying the same technique, the 
integrals of equation (4) 

where t ( T )  is the product of the function J ' ( p r ) / ( p r ) '  with g(r) and f ( r )  
respectively, are found by solving the corresponding inhomogeneous differential 
equation: 

Here r, is the cut-off value of the r-mesh, for which the conditions g(r,) = 0 and 
f(rm) = 0 are fulfilled with sufficient numerical accuracy. As long as the potential 
is defined by the cubic spline function, the described method is free of systematic 
errors. Almost all one-dimensional problems appearing in the present work like one- 
dimensional integrals and ordinary differential equations are treated by analogous 
procedures. Due to cancellation of digits, loss of amracy occurs only for p-values 
higher than 500 au when the machine precision comes to 14 decimal digits. Extending 
the p-integration up to this value produces an error of less than 0.025% even for the 
most critical case, the Is electron with the broadest CP. This estimation results by 
comparing the numerical value of the CP in the long-wave limit &(q = 0) for the 1s 
electron in the Coulomb potential with its analytical value (see appendix): 

In equation (6), r(z) and G ( z )  denote the usual gamma and psi functions, 
respectively. J;,(O) = 0.00916429 au results for a = 1/137.035968 [42]. 

3.2 klence levels 

The Fourier transform u n k ( K )  of the lattice-periodic part U,*(.) of the MAPW 
umub function can be expressed explicitly by the MAPW m u b  spinors A and U in 
the form [43]: 
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The first integral in equation (7) is evaluated by the method described in the foregoing 
section. For the second integral-abbreviated by I,-the following recursion relation 
is used: 

H Reinisch and H Bross 

for 1 >, 2 There exist elementary expressions for Io and Il with which to start 
the recursion. The Fourier transform of $,,*(.) is non-zero only if p = k + K .  
Therefore, using equation (3) one obtains the following sum for n(p) :  

where p = k + K is the decomposition of p into the reduced wavevector k and the 
reciprocal lattice vector K. At T = 0 K the sum is to be extended over the occupied 
electron states only. The spherical mean value n(p) is determined by a weighted 
average of n ( p )  along properly chosen directions 1411. For most applications three 
different directions are sufficient in the case of cubic strumreS. 

4. Numerical parameters 

The lattice constant a = 7.6813 was chosen according to Christensen and Seraphin 
[MI. The radius rap of the Slater sphere touching the wsc is given by rap = u / d  
for the FCC lattice. The partition of the interval [0, rap] in the form ri 0: (i- l)', i = 
1,. . . ,129, was taken from Moruzzi el a1 [2] for the representation of the effective 
potential and the electron charge density. A refinement of the r-mesh such that 
Ti+, - ri r O.l r i ,  i = 2, ..., 20, has been proven to be well suited for the 
integration method used. In the MAPW umutz the maximum value of the angular 
momentum was 1,- = 3. Nineteen different ansatz energies have been used including 
the three atom-lie levels of the 4f, 5s and 5p electrons. About 60 plane waves, 
slightly dependent on the k-point, were taken into account according to the condition 
(a/2n)'Ik+ KIZ < 15. The integrations in k-space were carried out with 28 k-points 
within the irreducible wedge described in detail by Bross [45]. 

The p-mesh for the integration of the right-hand side of equation (1) was similarly 
chosen: p i  0: ( i  - 1)*, i = 1,. . . ,301. In the case of atomic states, the actual upper 
integration limit p ,  = 500(2n/a) au causes a systematic error of less than 0.025%. 
The corresponding value for the valence states was chosen to be 60(2n/a)  au. 
Proceeding in this way the main error results from the spherical averaging process 
and amounts to about 0.1%. 

5. Numerical results and discussion 

The present investigations are based on two different potentials. Setting a = 0 in all 
equations yields the self-consistent non-relativistic potential V,, with the Hamiltonian 
H,,, = -A + Koa. The second potential V,, is the result of the relativistic 
self-consistent calculation with all relativistic corrections switched on (a # 0). 
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This procedure defines the operator X x 1 .  Note that the proper relativistic effect 
AH = HEl - H,,, originates from comparison of the results of these two types of 
calculation, i.e. from different potentials. For further considerations it is appropriate 
to split the relativistic correction AX into parts: AX = AXDs + AHv. Here AXm 
is the difference between the relativistic Hamiltonian and the SchrOdmger operator 
with the potential V,, and AHv = V,, - Ken. For the valence electrons HDs is well 
approximated by the sum 7 id  + Xmv + 31, (see section 2). 

Radius (a...) 

Figure 1. Spherically averaged charge density determined with the operators -A + Vrd 
(. . . . . .), H,., (-) and H M O  (- - -), multiplied by 4 d .  

F@re 2. Effective charge Zrc, (-) and the difference Z,e, - Z... (- - -). 

Recalling the effects of the relativistic corrections on the band structure, the levels 
with a large portion of s symmetry are raised by H ,  but lowered even more by Hmv. 
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Table 1. Relativistic orbilal Compton profila J,,, ( 9 )  in units of h/(  meZ) 

q l s + ( 2 )  Zs+(2) 2p-(2)  2P+(4)  3s+(2)  3P-(2)  3 P f ( 4 )  
0.00 9.33E-03 3.3%-02 1.61E-02 1.82E-02 7.ME-02 4.278-02 4.618-02 
0.05 9.33E-03 3.32E-02 1.61E-02 1.82E-02 7.ME-02 4278-02 4.61E-02 
0.10 
0.15 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 

0.80 
1.00 
1.20 
1.40 
1.60 
1.80 
2.00 
2.40 
3.00 
4.00 

5.00 
6.00 
7.00 
8.00 

10.00 
15.00 
20.00 
30.00 
40.00 
60.00 

100.00 - 

933E-03 
9.33E-03 
9.33E-03 
9 3 3 6 0 3  
9.338-03 
9338-03 
9.338-03 
9.33E-03 

9338-03 
933E-03 
9.33E-03 
932E-03 
932E-03 
9.328-03 
9.32E-03 
9.31603 
9.3OE-03 
9.27E-03 

9.248-03 
9.208-03 
9.15E-03 
9.09E-03 
8.96E-03 
8.53E-03 
7.978-03 
6.648-03 
S.ZSE-03 
3.00E-03 
9.12E-04 

3.328-02 
3.328-02 
3.32E-02 
3.328-02 
3.328-02 
3.318-02 
3.318-02 
3.318-02 

3318-02 
330E-02 
3.308-02 
3.29E-02 
3.28E-02 
3.27E-02 
3.26E-02 
3.7.3E-02 
3.18602 
3.09E-02 

2.96E-02 
2.82E-02 
2.66E-02 
2.49E-02 
2.12E- 02 
1.ZE-02 
6.28E-03 
1.41E-03 
8.17E-04 
695E-04 
2.148-04 

1.61E-02 
1.61E-02 
1.61E-02 
1.61E-02 
l6lE-02 
1.61E-02 
1.61E-02 
1.61E-02 

1.61E-02 
1.61 E-02 
1.6lE-02 
1.61E-02 
1.61E-02 
1.61E-02 
1.61E-02 
1.61E-02 
1.61E-02 
1.61E-02 

1.61E-02 
1.6lE-02 
1.6OE-02 
1.598-02 
1.568-02 
1.438-02 
1.20E-02 
7fl3E-03 
3.568-03 
8.608-04 
8.17E-OS 

LSE-02 
1.828-02 
1.82E-02 
182E-02 
1.828-02 
1.82E-02 
1.82E-02 
1.828-02 

18ZE-02 
1828-02 
l82E-02 
182E-02 
182E-02 
18ZE-02 
1.82E-02 
1.82E-02 
1.82E-02 
1.81602 

1.81E-02 
1.8OE-02 
1.79E-02 
1.78E-02 
1.74E-02 
1.54E-02 
1238-02 
6.3OE-03 
2.77E-03 
S.12E-04 
3.04E-05 

7.3OE-02 
7.29502 
7.29502 
7.28E-02 
7.27E-02 
7.25E-02 
7.73-02 
7.21E-02 

7.188-02 
7.11E-02 
7.03E-02 
6.948-02 
6.83E-02 
6.718-02 
6.588-02 
6.298-02 
5.798-02 
4.858-02 

3.87E-02 
296E-02 
219E-02 
1.58E-02 
8.61E-03 
5.56E-03 
4.58E-03 
1.06E-03 
224E-04 
1.65E-04 
5.32E-05 

427E-02 
4.278-02 
4.27E-02 
4.2%-02 
4.27E-02 
4.27E-02 
4.278-02 
4.27E-02 

4.27E-02 
4.278-02 
4.278-02 
4.27E-02 
4.27E-02 
4.268-02 
4.268-02 
4.258-02 
4.223-02 
4.138-02 

3.96E-02 
3.728-02 
3.60602 
3.OZE-02 
27.0602 
6.79E-03 
2.WE-03 
1.53E-03 
1.ME-03 
2 6 4 5 0 4  
235E-05 

4.618-02 
4618-02 
4.61E-02 
4.61E-02 
4.61E-02 
4.61E-02 
4.618-02 
4.618-02 

4.618-02 
4.61E-02 
4.60E-02 
4.60E-02 
4.60E-02 
4.60E-02 
459E-02 
4.58E-02 
4.54E-02 
4.41E-02 

4.18E-02 
3.86E-02 
244E-02 
2.98E-02 
2.03E-02 
5.27E-03 
2OZE-03 
1.69E-03 
9.05E-04 
1.70E-04 
9.29E-06 

X, has no effect on these levels but lifts the degeneracy of the others, which are 
lowered slightly by X H d  and X,,. The magnitude of the shifts differs by one order of 
magnitude between the highest atomic levels and the valence electrons. 

As the effect of Xmv is dominant, the relativistic treatment enhances the binding 
of the core electrons to the nucleus. This is illustrated by the plot of the spherically 
averaged electron charge density in figure 1, obtained for the relativistic case (full 
curve), for the case Q = 0 (broken curve), and for the operator -A + V,, (dotted 
curve). Comparing the full curve and the dotted curve shows that the operator AXm 
causes the humps of the density to be enhanced and to be shifted towards the origin. 
Including AX, decreases this shift with increasing distance from the origin which 
can be seen by comparing the full curve and the broken curve. Obviously LIZ, 
and AX, partially compensate each other. This compensation is maximal for the 
outermost core electrons. From figure 2 we learn that the nuclear Coulomb potential 
is more stronelv screened in the relativistic treatment than in the non-relativistic case. 
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Table 1. (continued) 

'I M-(4) 3d+(6) 4S+(2) 4p-(2) 4P+(4) 4d-(4) M+(6)  
0.00 2.97E-02 3.058-02 15OE-01 9.458-02 1.02E-01 7.7OE-02 7.888-02 
0.05 297E-02 3.058-02 15OE-01 9.4.58-02 1.02E-01 7.7OE-02 7.888-02 
0.10 297E-02 3.OSE-02 150E-01 9.45E-02 lB2E-01 7.708-02 7.88E-02 
0.15 2.97E-02 3.058-02 1.5OE-01 9.458-02 1.02E-01 7.7OE-02 7.88E-02 
0.20 297E-02 3.05E-02 1.49E-01 9.45E-02 1.OZE-01 7.7OE-02 7.88E-02 
030 297E-02 3.05E-02 1.49E-01 9.45E-02 1.OZE-01 7.7OE-02 7.888-02 
0.40 2978-02 3.05E-02 1.47E-01 9.44E-02 1.02E-01 7.7OE-02 788B-02 
050 2.978-02 3.05E-02 1.46E-01 9.44E-02 1.OZE-01 7.7OE-02 788E-02 
0.60 2.97E-02 3.05E-02 1.44E-01 9.44E-02 1.02E-01 7.7OE-02 7.888-02 
0.70 2.97E-02 3.05E-02 1.42E-01 9.44E-02 1.02E-01 7.7OE-02 7.88E-02 

0.80 297E-02 3.0SE-02 139E-01 9.43E-02 1.OZE-01 7.70E-02 7.88E-02 
1.00 2WE-02 3.05E-02 1.33E-01 9.41E-02 1.OZE-01 7698-02 7.88E-02 
1.20 297E-02 3.05E-02 1.26E-01 9.37E-02 1.01E-01 7.69E-02 7.88E-02 
1.40 2.97602 3.058-02 1.19E-01 9.318-02 IaOE-01 7.69E-02 7.87E-02 
1.60 2.97602 3.058-02 1.11E-01 9.238-02 9.918-02 7.68E-02 7.86E-02 
1.80 297E-02 3.05E-02 1.02E-01 9.12E-02 9.74E-02 7.668-02 7.84E-02 
2.00 2978-02 3.05E-02 9.3SE-02 8.97E-02 954E-02 7.648-02 1.818-02 
2.40 2978-02 3.05E-02 7.638-02 8.568-02 8.98B-02 7.54E-02 7.718-02 
303 2.978-02 3.04E-02 5.34E-02 7.678-02 7.82E-02 7.27E-02 7.398-07. 
4.00 2.968-02 3.04E-02 277E-02 5.70E-02 5.42E-02 6.35E-02 6.38B-02 

5.00 2.95E-02 3.02E-02 1.7OE-02 3.67E-02 3.218-02 4.98E-02 4.928-02 
6.00 2.92E-02 2998-02 1.478-02 2.12E-02 1.728-02 3538-02 3.428-02 
7.00 287E-02 2.938-02 1.468-02 1.19E-02 9.738-03 2.298-02 2178-02 
8.00 278E-02 2.84E-02 1.378-02 7.63E-03 7.03E-03 1.398-02 1.29E-02 

10.00 253E-02 2.568-02 8.848-03 6.00E-03 6.48E-03 5.00E-03 4.61E-03 
1.5.00 159B-02 1.568-02 1.648-03 3.698-03 2.988-03 2.478-03 252E-03 
20.00 7958-03 7.55E-03 1.378-03 9.59E-04 6.8lE-04 1.868-03 l.8OE-03 
30.W 159E-03 1.41E-03 3.9OE-04 3.46E-04 3.98E-04 4.53E-04 4.OSE-04 
40.00 3.278-04 273E-04 6.69E-05 259E-04 234B-04 9.47E-05 7908-05 
60.00 2.168-05 1.59E-05 4.22E-05 6.94E-05 4.45E-05 6.13E-06 4.50E-06 

1W.00 4.43E-07 2.50E-07 1.39E-05 6,078-06 239E-06 1.2ZE-07 6.898-08 

1271 have been used here. The absolute errors in the tabulated quantities depend on 
the orbital type and are estimated to be less than f2.S in the first omitted decimal 
place. This is the same accuracy as specified by Biggs. The presented cp values are 
very similar to those of Biggs but throughout are slightly larger at the origin and 
therefore smaller in the high-momentum region. Hence, the core-electron charge 
densities in the crystal are more delocalized than the atomic ones. This tendency 
is physically reasonable but the deviations from the atomic case are surprisingly 
small. The differences are < 4 in the third stated digit, which is the last significant 
one. Although one would expect the best agreement for the cps of strongly bound 
electrons, the deviations are maximal for the 1s electron. From the close agreement 
with Biggs' resuIts we may conclude that the many-body corrections beyond the one- 
particle scheme used here are small for the core electrons. This is not so with regard 
to the relativistic effect, as the above-mentioned partial compensation of A H ,  by 
A X ,  is small for the electrons in the vicinity of the nucleus. 

The effects of Hmv and H,, on the CP of the 22 atom-like electrons (42 Ss, Sp) 
are shown in figure 3(a). The eigenfunctions to -A + V,, yield the CP represented 
by the broken curve. The effects of the relativistic corrections on the momentum 
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0 

Figure 3. Effccfs of the operaton Hd ( ,  , , . , ), 7 L  (- . -) and Hd + 7 f m  + ‘Jf,, 
(-) on the Complon profile, calculated with the eigenfunctions of -A+ V, (- - -). 
(0) CP of lhe 4f, Ss and 5p electrons. (6) CP of the valence electrons. 

density and charge density are complementary to each other. Hmv binds the electrons 
more strongly to the nucleus and therefore the CP is broadened (chain cuwe). On the 
other hand, the influence of Eld is smaller and has opposite sign: the CP is enhanced 
near the origin and lowered in the upper momentum region (dotted curve). All three 
relativistic corrections together yield the full CUNC. Here the spin-orbit coupling 
contributes to the CP by approximately 0.1%. This is the same order of magnitude as 
the integration error of the spherical averaging process. For completeness, figure 3(b) 
shows the CPS of the 11 valence electrons. Owing to the better screening of the 
Coulomb potential in the relativistic case the d and f electrons are less localized. This 
behaviour is visible from figures 4(a)-(c), showing the effect of AH = H,, - H,, 
on the 46 innermost core electrons (a), the 22 outermost core electrons (b), the 11 
valence electrons (c) and all electrons (d). In the case of the 11 valence electrons, 
the effect of AH is changed in sign, Le. Z,, leads to an expansion of the d and f 
valence electrons. The dip at p Y 0.65 au is caused by the discontinuous occupation 
of the electron states at the Fermi energy. In figure 4(d) the total profiles for zero 
momentum differ by 1.7% only. 

6. Conclusions 

On the basis of relativistic self-consistent MAPW calculations, the effects of mass- 
velocity, the Darwin term and spin-orbit coupling on the spherically averaged 
Compton profile of gold have been discussed. 

Comparisons with the results of non-relativistic calculations show the importance 
of Darwin and mass-velocity corrections. Their effects on the CPs are easily 
understood on the basis of the well known behaviour of the electron charge density 
in real space, as real and momentum space are complementary to each other. The 
spin-orbit coupling contributes only an amount of 0.1% and is therefore negligible. 

The orbital CPs agree very well with the results of relativistic Hartree-Fock 
calculations by Biggs ef al. From this fact it may be concluded that the local- 
density approximation for the exchange potential is well suited even for the highly 
inhomogeneous electron gas in gold. 
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P@rr 4 Relativistically (-) and non-relalivirlicaliy (- - -) determined Complon 
pm6ler of (a) the 46 innermm1 elect", (b) the 27. alom-like eleclmns (4f. 5% 5p 
clecmns), (c) Ihe 11 valena eleclmns, ( d )  all 79 electrons. 

Experimental studies of the CP of gold are desirable in order to check the validity 
of the present calculations and the models used. 
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Appendix 

An analytical expression for the CP of the 1s electron in the Coulomb potential 
-2Z/r for the momentum transfer q = 0 can be obtained straightfonvardly by 
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applying equations (1) and (4) to the solution of the Dirac equation: 

H Remisch and H Bross 

1j2 -2r fi,(r) = + N ( ~ - P )  e /Q IjZ -zr s1.(4 = -NU + P) e 

where 

The method of calculation will be outlined by the example of the second integral of 
equation (4), which contains the small component f (  r). Apart from normalization 
factors, we have to calculate 

where 

The spherical Bessel function 3, can be expressed by the cylindrical one J3 
substitution the resulting integral can be found in [&I, vol 11, p 48, equation (6): 

After 

I(P,P') = $ P - ~ ~ ' F ( Z , ~ / W / ~ ; ( P ' / P ) ~ )  for r' < P. (4 
In equation (A2) F denotes the hypergeometric function. Setting r'/r = x in (AI) 
and replacing I ( r , r ' )  by (A2) the P integration can be carried out yielding the 
one-dimensional integral: 

With the aid of Gauss' relations for contiguous functions ((15.2.10) and (15.212) in 
[47]) and the special elementary cases of the Gauss series ((15.1.4) and (15.1.9) in 
[47]) the hypergeometric function can be written as follows: 

F(2,1/2;5/%x2)=--+- 3 31 + xz In (") 
4x2 8x3 1 - x  . 

From the two terms on the right-hand side of equation (A4) two integrals remain to 
be solved. For the first one 
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see 1481, p 284, equation (3.194) and 147, p 557, equation (15.1.21). The second 

dy (1 - Y’)~-’( 1 + y2) In y 

can be found in [48], p 538, equation (4.253). In the last expression B designates the 
beta function, which can be expressed by gamma functions. Summing over all terms, 
the conhibution of the small component becomes 

1 
X (-2+ z ; ; [ (2~+2) (+(~+3/2) -  +(1/2)) -41). 

A similar calculation for the contribution of the large component yields the result: 

Finally, equation (6) is given by the sum. 

JL(0) = @(O) + J p ( 0 ) .  
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